ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
Authors
Abstract:
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are considered as design variables of the optimization problem that can change the topology during the optimization process. For initial design, weight and stresses of the structure are obtained based on full material density over the design domain. The Method of Moving Asymptotes (MMA) is employed for optimization algorithm. Derivatives of the objective function and constraints with respect to the design variables are determined through a direct sensitivity analysis. In order to avoid singularity a relaxation technique is used for calculating stress constraints. A few examples are presented to demonstrate the performance of the method. It is shown that using the IA method and an appropriate stress relaxation technique can lead to reasonable optimum layouts.
similar resources
VOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
full textIsogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm
Topology optimization has been an interesting area of research in recent years. The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures. A two-dimensional plate is analyzed statically and the nodal displacements are calculated. The nodal displacements using Isogeometric analysis are found to be ...
full textISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES BY USING MMA
The Isogeometric Analysis (IA) method is applied for structural topology optimization instead of the finite element method. For this purpose, the material density is considered as a continuous function throughout the design domain and approximated by the Non-Uniform Rational B-Spline (NURBS) basis functions. The coordinates of control points which are also used for constructing the density func...
full textTOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS
This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...
full textBlock aggregation of stress constraints in topology optimization of structures
Structural topology optimization problems have been traditionally stated and solved by means of maximum stiffness formulations. On the other hand, some effort has been devoted to stating and solving this kind of problems by means of minimum weight formulations with stress (and/or displacement) constraints. It seems clear that the latter approach is closer to the engineering point of view, but i...
full textTopology optimization of structures: A minimum weight approach with stress constraints
Sizing and shape structural optimization problems are normally stated in terms of a minimum weight approach with constraints that limit the maximum allowable stresses and displacements. However, topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. In this kind of formulations, the aim is to distribute a given amount of...
full textMy Resources
Journal title
volume 6 issue 2
pages 303- 317
publication date 2016-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023